\(\int \frac {x^4 (d+e x)^2}{(d^2-e^2 x^2)^{7/2}} \, dx\) [45]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 121 \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5} \]

[Out]

1/5*d^3*(e*x+d)^2/e^5/(-e^2*x^2+d^2)^(5/2)-17/15*d^2*(e*x+d)/e^5/(-e^2*x^2+d^2)^(3/2)-arctan(e*x/(-e^2*x^2+d^2
)^(1/2))/e^5+2/15*(13*e*x+15*d)/e^5/(-e^2*x^2+d^2)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1649, 1828, 12, 223, 209} \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=-\frac {\arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}+\frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}} \]

[In]

Int[(x^4*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(d^3*(d + e*x)^2)/(5*e^5*(d^2 - e^2*x^2)^(5/2)) - (17*d^2*(d + e*x))/(15*e^5*(d^2 - e^2*x^2)^(3/2)) + (2*(15*d
 + 13*e*x))/(15*e^5*Sqrt[d^2 - e^2*x^2]) - ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]]/e^5

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 1649

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, Simp[(-d)*f*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2
*a*e*(p + 1))), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)
*Q + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p
 + 1/2, 0] && GtQ[m, 0]

Rule 1828

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*
g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d+e x) \left (\frac {2 d^4}{e^4}+\frac {5 d^3 x}{e^3}+\frac {5 d^2 x^2}{e^2}+\frac {5 d x^3}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d} \\ & = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {\frac {11 d^4}{e^4}+\frac {30 d^3 x}{e^3}+\frac {15 d^2 x^2}{e^2}}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2} \\ & = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {15 d^4}{e^4 \sqrt {d^2-e^2 x^2}} \, dx}{15 d^4} \\ & = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{e^4} \\ & = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{e^4} \\ & = \frac {d^3 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {17 d^2 (d+e x)}{15 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (15 d+13 e x)}{15 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.86 \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {\frac {\sqrt {d^2-e^2 x^2} \left (16 d^3-17 d^2 e x-22 d e^2 x^2+26 e^3 x^3\right )}{(d-e x)^3 (d+e x)}+30 \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{15 e^5} \]

[In]

Integrate[(x^4*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

((Sqrt[d^2 - e^2*x^2]*(16*d^3 - 17*d^2*e*x - 22*d*e^2*x^2 + 26*e^3*x^3))/((d - e*x)^3*(d + e*x)) + 30*ArcTan[(
e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/(15*e^5)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(323\) vs. \(2(107)=214\).

Time = 0.41 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.68

method result size
default \(e^{2} \left (\frac {x^{5}}{5 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}}{e^{2}}\right )+d^{2} \left (\frac {x^{3}}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {3 d^{2} \left (\frac {x}{4 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {d^{2} \left (\frac {x}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {\frac {4 x}{15 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {8 x}{15 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}}{d^{2}}\right )}{4 e^{2}}\right )}{2 e^{2}}\right )+2 d e \left (\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {4 d^{2} \left (\frac {x^{2}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {2 d^{2}}{15 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\right )}{e^{2}}\right )\) \(324\)

[In]

int(x^4*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

e^2*(1/5*x^5/e^2/(-e^2*x^2+d^2)^(5/2)-1/e^2*(1/3*x^3/e^2/(-e^2*x^2+d^2)^(3/2)-1/e^2*(x/e^2/(-e^2*x^2+d^2)^(1/2
)-1/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))))+d^2*(1/2*x^3/e^2/(-e^2*x^2+d^2)^(5/2)-3/2*d^
2/e^2*(1/4*x/e^2/(-e^2*x^2+d^2)^(5/2)-1/4*d^2/e^2*(1/5*x/d^2/(-e^2*x^2+d^2)^(5/2)+4/5/d^2*(1/3*x/d^2/(-e^2*x^2
+d^2)^(3/2)+2/3*x/d^4/(-e^2*x^2+d^2)^(1/2)))))+2*d*e*(x^4/e^2/(-e^2*x^2+d^2)^(5/2)-4*d^2/e^2*(1/3*x^2/e^2/(-e^
2*x^2+d^2)^(5/2)-2/15*d^2/e^4/(-e^2*x^2+d^2)^(5/2)))

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.42 \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {16 \, e^{4} x^{4} - 32 \, d e^{3} x^{3} + 32 \, d^{3} e x - 16 \, d^{4} + 30 \, {\left (e^{4} x^{4} - 2 \, d e^{3} x^{3} + 2 \, d^{3} e x - d^{4}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) - {\left (26 \, e^{3} x^{3} - 22 \, d e^{2} x^{2} - 17 \, d^{2} e x + 16 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{15 \, {\left (e^{9} x^{4} - 2 \, d e^{8} x^{3} + 2 \, d^{3} e^{6} x - d^{4} e^{5}\right )}} \]

[In]

integrate(x^4*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/15*(16*e^4*x^4 - 32*d*e^3*x^3 + 32*d^3*e*x - 16*d^4 + 30*(e^4*x^4 - 2*d*e^3*x^3 + 2*d^3*e*x - d^4)*arctan(-(
d - sqrt(-e^2*x^2 + d^2))/(e*x)) - (26*e^3*x^3 - 22*d*e^2*x^2 - 17*d^2*e*x + 16*d^3)*sqrt(-e^2*x^2 + d^2))/(e^
9*x^4 - 2*d*e^8*x^3 + 2*d^3*e^6*x - d^4*e^5)

Sympy [F]

\[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {x^{4} \left (d + e x\right )^{2}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate(x**4*(e*x+d)**2/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(x**4*(d + e*x)**2/(-(-d + e*x)*(d + e*x))**(7/2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 310 vs. \(2 (107) = 214\).

Time = 0.43 (sec) , antiderivative size = 310, normalized size of antiderivative = 2.56 \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {1}{15} \, e^{2} x {\left (\frac {15 \, x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {20 \, d^{2} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {8 \, d^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}}\right )} - \frac {1}{3} \, x {\left (\frac {3 \, x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}} - \frac {2 \, d^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}}\right )} + \frac {2 \, d x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e} + \frac {d^{2} x^{3}}{2 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {8 \, d^{3} x^{2}}{3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{3}} - \frac {3 \, d^{4} x}{10 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {16 \, d^{5}}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{5}} + \frac {11 \, d^{2} x}{30 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}} - \frac {4 \, x}{15 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{4}} - \frac {\arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}} e^{4}} \]

[In]

integrate(x^4*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

1/15*e^2*x*(15*x^4/((-e^2*x^2 + d^2)^(5/2)*e^2) - 20*d^2*x^2/((-e^2*x^2 + d^2)^(5/2)*e^4) + 8*d^4/((-e^2*x^2 +
 d^2)^(5/2)*e^6)) - 1/3*x*(3*x^2/((-e^2*x^2 + d^2)^(3/2)*e^2) - 2*d^2/((-e^2*x^2 + d^2)^(3/2)*e^4)) + 2*d*x^4/
((-e^2*x^2 + d^2)^(5/2)*e) + 1/2*d^2*x^3/((-e^2*x^2 + d^2)^(5/2)*e^2) - 8/3*d^3*x^2/((-e^2*x^2 + d^2)^(5/2)*e^
3) - 3/10*d^4*x/((-e^2*x^2 + d^2)^(5/2)*e^4) + 16/15*d^5/((-e^2*x^2 + d^2)^(5/2)*e^5) + 11/30*d^2*x/((-e^2*x^2
 + d^2)^(3/2)*e^4) - 4/15*x/(sqrt(-e^2*x^2 + d^2)*e^4) - arcsin(e^2*x/(d*sqrt(e^2)))/(sqrt(e^2)*e^4)

Giac [F]

\[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{2} x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate(x^4*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2*x^4/(-e^2*x^2 + d^2)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {x^4\,{\left (d+e\,x\right )}^2}{{\left (d^2-e^2\,x^2\right )}^{7/2}} \,d x \]

[In]

int((x^4*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x)

[Out]

int((x^4*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2), x)